Anthropic Claude¶
Class: AnthropicClaudeBlockV1
Source: inference.core.workflows.core_steps.models.foundation.anthropic_claude.v1.AnthropicClaudeBlockV1
Ask a question to Anthropic Claude model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your Anthropic API key to use the Claude model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/anthropic_claude@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Claude model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Anthropic API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_image_size |
int |
Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Anthropic API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Anthropic Claude
in version v1
.
- inputs:
SIFT Comparison
,Keypoint Detection Model
,Image Convert Grayscale
,VLM as Classifier
,VLM as Detector
,Image Threshold
,Polygon Visualization
,Dynamic Zone
,CogVLM
,Pixelate Visualization
,Circle Visualization
,Dynamic Crop
,Dot Visualization
,Slack Notification
,Model Comparison Visualization
,Background Color Visualization
,Absolute Static Crop
,Keypoint Visualization
,Roboflow Custom Metadata
,LMM
,Single-Label Classification Model
,LMM For Classification
,Template Matching
,Florence-2 Model
,Roboflow Dataset Upload
,Clip Comparison
,Google Gemini
,Label Visualization
,Local File Sink
,Image Slicer
,Gaze Detection
,Triangle Visualization
,Anthropic Claude
,Corner Visualization
,Stability AI Inpainting
,Florence-2 Model
,Image Contours
,Llama 3.2 Vision
,Size Measurement
,OCR Model
,Line Counter
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Distance Measurement
,Camera Focus
,Depth Estimation
,Perspective Correction
,Google Vision OCR
,Camera Calibration
,Line Counter Visualization
,Multi-Label Classification Model
,OpenAI
,Object Detection Model
,Email Notification
,Color Visualization
,SIFT
,Image Slicer
,Mask Visualization
,Twilio SMS Notification
,Crop Visualization
,Grid Visualization
,Clip Comparison
,Pixel Color Count
,Relative Static Crop
,Stitch Images
,Webhook Sink
,Buffer
,Stitch OCR Detections
,Ellipse Visualization
,Image Blur
,Halo Visualization
,Reference Path Visualization
,SIFT Comparison
,Image Preprocessing
,Line Counter
,Roboflow Dataset Upload
,OpenAI
,Classification Label Visualization
,Dimension Collapse
,Blur Visualization
,Polygon Zone Visualization
,Identify Changes
,Trace Visualization
,Bounding Box Visualization
,Stability AI Image Generation
,CSV Formatter
,Cosine Similarity
- outputs:
Segment Anything 2 Model
,Keypoint Detection Model
,VLM as Classifier
,VLM as Detector
,Image Threshold
,Detections Stitch
,Polygon Visualization
,YOLO-World Model
,CogVLM
,Time in Zone
,Circle Visualization
,Dynamic Crop
,Dot Visualization
,Slack Notification
,Model Comparison Visualization
,Background Color Visualization
,Cache Set
,Cache Get
,Roboflow Custom Metadata
,LMM
,Keypoint Visualization
,LMM For Classification
,Time in Zone
,Florence-2 Model
,Roboflow Dataset Upload
,Detections Consensus
,Google Gemini
,Clip Comparison
,VLM as Classifier
,Label Visualization
,Local File Sink
,Keypoint Detection Model
,Triangle Visualization
,Anthropic Claude
,Corner Visualization
,Stability AI Inpainting
,Florence-2 Model
,Path Deviation
,Path Deviation
,Llama 3.2 Vision
,Size Measurement
,Line Counter
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Distance Measurement
,Perspective Correction
,Google Vision OCR
,Line Counter Visualization
,VLM as Detector
,OpenAI
,Email Notification
,Object Detection Model
,Color Visualization
,Mask Visualization
,Twilio SMS Notification
,Crop Visualization
,Pixel Color Count
,Clip Comparison
,Grid Visualization
,Instance Segmentation Model
,Webhook Sink
,Buffer
,Ellipse Visualization
,Image Blur
,Halo Visualization
,Reference Path Visualization
,SIFT Comparison
,Line Counter
,Image Preprocessing
,Roboflow Dataset Upload
,JSON Parser
,OpenAI
,Classification Label Visualization
,CLIP Embedding Model
,Polygon Zone Visualization
,Object Detection Model
,Trace Visualization
,Bounding Box Visualization
,Stability AI Image Generation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Anthropic Claude
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Claude model.classes
(list_of_values
): List of classes to be used.api_key
(Union[secret
,string
]): Your Anthropic API key.model_version
(string
): Model to be used.temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..max_image_size
(integer
): Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio.
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Anthropic Claude
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/anthropic_claude@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "claude-3-5-sonnet",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_image_size": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}