CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Image Convert Grayscale
,Detections Stitch
,YOLO-World Model
,Dynamic Zone
,Pixelate Visualization
,SmolVLM2
,Circle Visualization
,Dynamic Crop
,Dot Visualization
,Absolute Static Crop
,Keypoint Visualization
,Byte Tracker
,Roboflow Custom Metadata
,LMM For Classification
,Template Matching
,Time in Zone
,Detections Consensus
,Roboflow Dataset Upload
,Clip Comparison
,Google Gemini
,VLM as Classifier
,Local File Sink
,Bounding Rectangle
,Gaze Detection
,Florence-2 Model
,Path Deviation
,Path Deviation
,Qwen2.5-VL
,Camera Focus
,Depth Estimation
,Perspective Correction
,Property Definition
,Google Vision OCR
,Single-Label Classification Model
,Detections Stabilizer
,Camera Calibration
,Line Counter Visualization
,Multi-Label Classification Model
,VLM as Detector
,Data Aggregator
,OpenAI
,Object Detection Model
,Email Notification
,Color Visualization
,SIFT
,Detections Classes Replacement
,Pixel Color Count
,Clip Comparison
,Grid Visualization
,Stitch Images
,Reference Path Visualization
,Detections Merge
,SIFT Comparison
,Velocity
,Line Counter
,Rate Limiter
,JSON Parser
,First Non Empty Or Default
,Classification Label Visualization
,Delta Filter
,Blur Visualization
,Polygon Zone Visualization
,Identify Changes
,Bounding Box Visualization
,Cosine Similarity
,SIFT Comparison
,Segment Anything 2 Model
,Keypoint Detection Model
,Byte Tracker
,VLM as Classifier
,VLM as Detector
,Image Threshold
,Polygon Visualization
,CogVLM
,Time in Zone
,Identify Outliers
,Slack Notification
,Model Comparison Visualization
,Background Color Visualization
,Cache Set
,QR Code Detection
,Byte Tracker
,Cache Get
,Expression
,LMM
,Detection Offset
,Single-Label Classification Model
,Florence-2 Model
,Label Visualization
,Image Slicer
,Keypoint Detection Model
,Triangle Visualization
,Anthropic Claude
,Corner Visualization
,Stability AI Inpainting
,Image Contours
,Llama 3.2 Vision
,Size Measurement
,OCR Model
,Line Counter
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Distance Measurement
,Detections Transformation
,Continue If
,Moondream2
,Image Slicer
,Barcode Detection
,Mask Visualization
,Twilio SMS Notification
,Crop Visualization
,Relative Static Crop
,Instance Segmentation Model
,Overlap Filter
,Buffer
,Webhook Sink
,Stitch OCR Detections
,Ellipse Visualization
,Dominant Color
,Image Blur
,Multi-Label Classification Model
,Image Preprocessing
,Roboflow Dataset Upload
,OpenAI
,Detections Filter
,CLIP Embedding Model
,Dimension Collapse
,Object Detection Model
,Trace Visualization
,Halo Visualization
,Stability AI Image Generation
,Environment Secrets Store
,CSV Formatter
- outputs:
Segment Anything 2 Model
,Image Threshold
,Detections Stitch
,Polygon Visualization
,YOLO-World Model
,CogVLM
,Time in Zone
,Circle Visualization
,Dynamic Crop
,Dot Visualization
,Slack Notification
,Model Comparison Visualization
,Background Color Visualization
,Cache Set
,Cache Get
,Roboflow Custom Metadata
,LMM
,Keypoint Visualization
,LMM For Classification
,Time in Zone
,Florence-2 Model
,Roboflow Dataset Upload
,Google Gemini
,Label Visualization
,Local File Sink
,Triangle Visualization
,Anthropic Claude
,Corner Visualization
,Stability AI Inpainting
,Florence-2 Model
,Path Deviation
,Path Deviation
,Llama 3.2 Vision
,Size Measurement
,Line Counter
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Distance Measurement
,Perspective Correction
,Google Vision OCR
,Line Counter Visualization
,OpenAI
,Email Notification
,Color Visualization
,Mask Visualization
,Twilio SMS Notification
,Crop Visualization
,Pixel Color Count
,Clip Comparison
,Instance Segmentation Model
,Webhook Sink
,Ellipse Visualization
,Image Blur
,Halo Visualization
,Reference Path Visualization
,SIFT Comparison
,Line Counter
,Image Preprocessing
,Roboflow Dataset Upload
,OpenAI
,Classification Label Visualization
,CLIP Embedding Model
,Polygon Zone Visualization
,Trace Visualization
,Bounding Box Visualization
,Stability AI Image Generation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}