Keypoint Visualization¶
Class: KeypointVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.keypoint.v1.KeypointVisualizationBlockV1
The KeypointVisualization
block uses a detections from an
keypoint detection model to draw keypoints on objects using
sv.VertexAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/keypoint_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
annotator_type |
str |
Type of annotator to be used for keypoint visualization.. | ❌ |
color |
str |
Color of the keypoint.. | ✅ |
text_color |
str |
Text color of the keypoint.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
radius |
int |
Radius of the keypoint in pixels.. | ✅ |
edges |
List[Any] |
Mapping of keypoints to edges. List of pairs of indices.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Keypoint Visualization
in version v1
.
- inputs:
Detection Offset
,Roboflow Custom Metadata
,LMM
,Size Measurement
,Image Convert Grayscale
,Buffer
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Distance Measurement
,Relative Static Crop
,Line Counter Visualization
,Detections Classes Replacement
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Line Counter
,Detections Transformation
,Depth Estimation
,Google Vision OCR
,Roboflow Dataset Upload
,Dynamic Zone
,Llama 3.2 Vision
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Detections Filter
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Dimension Collapse
,Slack Notification
,Stability AI Image Generation
,Trace Visualization
,Line Counter
,Corner Visualization
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Cosine Similarity
,Circle Visualization
,JSON Parser
,OpenAI
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Template Matching
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,SIFT Comparison
,Pixel Color Count
,VLM as Detector
,Roboflow Dataset Upload
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Model Monitoring Inference Aggregator
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Identify Outliers
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
,Detections Consensus
- outputs:
LMM
,Buffer
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Relative Static Crop
,Line Counter Visualization
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Multi-Label Classification Model
,Depth Estimation
,Google Vision OCR
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Dot Visualization
,Model Comparison Visualization
,Instance Segmentation Model
,Classification Label Visualization
,Camera Calibration
,Qwen2.5-VL
,Stability AI Image Generation
,Trace Visualization
,Time in Zone
,Corner Visualization
,Image Threshold
,Blur Visualization
,QR Code Detection
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Circle Visualization
,OpenAI
,Moondream2
,Florence-2 Model
,Label Visualization
,Stitch Images
,Image Preprocessing
,Detections Stitch
,Template Matching
,Byte Tracker
,SmolVLM2
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Bounding Box Visualization
,CLIP Embedding Model
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Image Blur
,Color Visualization
,Barcode Detection
,Pixelate Visualization
,Single-Label Classification Model
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,Image Slicer
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Keypoint Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(keypoint_detection_prediction
): Predictions.color
(string
): Color of the keypoint..text_color
(string
): Text color of the keypoint..text_scale
(float
): Scale of the text..text_thickness
(integer
): Thickness of the text characters..text_padding
(integer
): Padding around the text in pixels..thickness
(integer
): Thickness of the outline in pixels..radius
(integer
): Radius of the keypoint in pixels..edges
(list_of_values
): Mapping of keypoints to edges. List of pairs of indices..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Keypoint Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/keypoint_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.keypoint_detection_model.predictions",
"annotator_type": "<block_does_not_provide_example>",
"color": "#A351FB",
"text_color": "black",
"text_scale": 0.5,
"text_thickness": 1,
"text_padding": 10,
"thickness": 2,
"radius": 10,
"edges": "$inputs.edges"
}