OpenAI¶
v3¶
Class: OpenAIBlockV3
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v3.OpenAIBlockV3
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
Provide your OpenAI API key or set the value to rf_key:account
(or
rf_key:user:<id>
) to proxy requests through Roboflow's API.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v3
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v3
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,Google Vision OCR
,Gaze Detection
,Florence-2 Model
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,OpenAI
,Stability AI Image Generation
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,Cosine Similarity
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,Identify Changes
,LMM For Classification
,Image Threshold
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Dot Visualization
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
Keypoint Detection Model
,CogVLM
,Anthropic Claude
,Cache Set
,Google Vision OCR
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Distance Measurement
,OpenAI
,VLM as Detector
,Stability AI Image Generation
,YOLO-World Model
,Mask Visualization
,Object Detection Model
,Triangle Visualization
,Path Deviation
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Instance Segmentation Model
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,LMM For Classification
,Detections Consensus
,Image Threshold
,Detections Stitch
,SIFT Comparison
,JSON Parser
,Clip Comparison
,Line Counter Visualization
,Line Counter
,Dot Visualization
,Instance Segmentation Model
,Florence-2 Model
,Background Color Visualization
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Time in Zone
,Email Notification
,Grid Visualization
,Path Deviation
,CLIP Embedding Model
,Stability AI Inpainting
,Label Visualization
,Object Detection Model
,Llama 3.2 Vision
,Image Preprocessing
,Ellipse Visualization
,ONVIF Control
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Clip Comparison
,Cache Get
,Time in Zone
,Buffer
,Dynamic Crop
,OpenAI
,Keypoint Visualization
,Local File Sink
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v3
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[ROBOFLOW_MANAGED_KEY
,string
,secret
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v3
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v3",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v2¶
Class: OpenAIBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v2.OpenAIBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v2
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,Google Vision OCR
,Gaze Detection
,Florence-2 Model
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,OpenAI
,Stability AI Image Generation
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,Cosine Similarity
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,Identify Changes
,LMM For Classification
,Image Threshold
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Dot Visualization
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
Keypoint Detection Model
,CogVLM
,Anthropic Claude
,Cache Set
,Google Vision OCR
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Distance Measurement
,OpenAI
,VLM as Detector
,Stability AI Image Generation
,YOLO-World Model
,Mask Visualization
,Object Detection Model
,Triangle Visualization
,Path Deviation
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Instance Segmentation Model
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,LMM For Classification
,Detections Consensus
,Image Threshold
,Detections Stitch
,SIFT Comparison
,JSON Parser
,Clip Comparison
,Line Counter Visualization
,Line Counter
,Dot Visualization
,Instance Segmentation Model
,Florence-2 Model
,Background Color Visualization
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Time in Zone
,Email Notification
,Grid Visualization
,Path Deviation
,CLIP Embedding Model
,Stability AI Inpainting
,Label Visualization
,Object Detection Model
,Llama 3.2 Vision
,Image Preprocessing
,Ellipse Visualization
,ONVIF Control
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Clip Comparison
,Cache Get
,Time in Zone
,Buffer
,Dynamic Crop
,OpenAI
,Keypoint Visualization
,Local File Sink
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: OpenAIBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v1.OpenAIBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts to the OpenAIBlock.
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
This model was previously part of the LMM block.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
openai_api_key |
str |
Your OpenAI API key. | ✅ |
openai_model |
str |
Model to be used. | ✅ |
json_output_format |
Dict[str, str] |
Holds dictionary that maps name of requested output field into its description. | ❌ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v1
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,Google Vision OCR
,Florence-2 Model
,Pixelate Visualization
,Single-Label Classification Model
,SIFT
,OpenAI
,Stability AI Image Generation
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,LMM For Classification
,Image Threshold
,SIFT Comparison
,Absolute Static Crop
,Line Counter Visualization
,Stitch Images
,Dot Visualization
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
CogVLM
,Anthropic Claude
,Cache Set
,Google Vision OCR
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Pixelate Visualization
,Single-Label Classification Model
,SIFT
,Moondream2
,Stability AI Image Generation
,YOLO-World Model
,Object Detection Model
,Overlap Filter
,Triangle Visualization
,Cosine Similarity
,Model Comparison Visualization
,LMM
,Segment Anything 2 Model
,Keypoint Detection Model
,Line Counter
,Google Gemini
,Roboflow Custom Metadata
,Byte Tracker
,Image Contours
,Circle Visualization
,Trace Visualization
,Detections Merge
,Webhook Sink
,Property Definition
,LMM For Classification
,First Non Empty Or Default
,Detections Stitch
,SIFT Comparison
,JSON Parser
,Clip Comparison
,Line Counter Visualization
,Identify Outliers
,Dynamic Zone
,Florence-2 Model
,Background Color Visualization
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Email Notification
,Camera Focus
,Path Deviation
,Stability AI Inpainting
,Label Visualization
,Blur Visualization
,Image Preprocessing
,Ellipse Visualization
,Delta Filter
,ONVIF Control
,VLM as Classifier
,Clip Comparison
,Time in Zone
,Rate Limiter
,Dynamic Crop
,Single-Label Classification Model
,OpenAI
,Keypoint Visualization
,Dominant Color
,OCR Model
,Expression
,Keypoint Detection Model
,Image Convert Grayscale
,Gaze Detection
,Detection Offset
,Distance Measurement
,SmolVLM2
,Dimension Collapse
,Qwen2.5-VL
,OpenAI
,VLM as Detector
,SIFT Comparison
,Mask Visualization
,Image Slicer
,Barcode Detection
,Path Deviation
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Crop Visualization
,Classification Label Visualization
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Bounding Box Visualization
,Size Measurement
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Detections Transformation
,Instance Segmentation Model
,VLM as Classifier
,Data Aggregator
,Color Visualization
,Identify Changes
,Detections Consensus
,Image Threshold
,Absolute Static Crop
,Stitch Images
,Multi-Label Classification Model
,Line Counter
,Dot Visualization
,QR Code Detection
,Detections Filter
,Instance Segmentation Model
,Model Monitoring Inference Aggregator
,Detections Stabilizer
,Template Matching
,Bounding Rectangle
,Roboflow Dataset Upload
,Image Blur
,Time in Zone
,Grid Visualization
,CLIP Embedding Model
,Object Detection Model
,Depth Estimation
,Llama 3.2 Vision
,Byte Tracker
,Continue If
,Byte Tracker
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Cache Get
,Buffer
,Relative Static Crop
,Velocity
,Local File Sink
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.openai_api_key
(Union[string
,secret
]): Your OpenAI API key.openai_model
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..
-
output
parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.image
(image_metadata
): Dictionary with image metadata required by supervision.structured_output
(dictionary
): Dictionary.raw_output
(string
): String value.*
(*
): Equivalent of any element.
Example JSON definition of step OpenAI
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v1",
"images": "$inputs.image",
"prompt": "my prompt",
"openai_api_key": "xxx-xxx",
"openai_model": "gpt-4o",
"json_output_format": {
"count": "number of cats in the picture"
},
"image_detail": "auto",
"max_tokens": 450
}