Stitch OCR Detections¶
Class: StitchOCRDetectionsBlockV1
Combines OCR detection results into a coherent text string by organizing detections spatially. This transformation is perfect for turning individual OCR results into structured, readable text!
How It Works¶
This transformation reconstructs the original text from OCR detection results by:
-
📐 Grouping text detections into rows based on their vertical (
y
) positions -
📏 Sorting detections within each row by horizontal (
x
) position -
📜 Concatenating the text in reading order (left-to-right, top-to-bottom)
Parameters¶
-
tolerance
: Controls how close detections need to be vertically to be considered part of the same line of text. A higher tolerance will group detections that are further apart vertically. -
reading_direction
: Determines the order in which text is read. Available options:-
"left_to_right": Standard left-to-right reading (e.g., English) ➡️
-
"right_to_left": Right-to-left reading (e.g., Arabic) ⬅️
-
"vertical_top_to_bottom": Vertical reading from top to bottom ⬇️
-
"vertical_bottom_to_top": Vertical reading from bottom to top ⬆️
-
"auto": Automatically detects the reading direction based on the spatial arrangement of text elements.
-
Why Use This Transformation?¶
This is especially useful for:
-
📖 Converting individual character/word detections into a readable text block
-
📝 Reconstructing multi-line text from OCR results
-
🔀 Maintaining proper reading order for detected text elements
-
🌏 Supporting different writing systems and text orientations
Example Usage¶
Use this transformation after an OCR model that outputs individual words or characters, so you can reconstruct the original text layout in its intended format.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/stitch_ocr_detections@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
reading_direction |
str |
The direction of the text in the image.. | ❌ |
tolerance |
int |
The tolerance for grouping detections into the same line of text.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Stitch OCR Detections
in version v1
.
- inputs:
Detection Offset
,Moondream2
,Path Deviation
,Detections Filter
,SIFT Comparison
,VLM as Detector
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Detections Merge
,Detections Classes Replacement
,Velocity
,Distance Measurement
,Byte Tracker
,Dynamic Crop
,Time in Zone
,Image Contours
,Detections Stitch
,Time in Zone
,Template Matching
,Line Counter
,Byte Tracker
,SIFT Comparison
,Object Detection Model
,Path Deviation
,Line Counter
,Detections Stabilizer
,Detections Transformation
,Byte Tracker
,Google Vision OCR
,Overlap Filter
,Perspective Correction
,Object Detection Model
,Detections Consensus
- outputs:
Size Measurement
,LMM
,Roboflow Custom Metadata
,Distance Measurement
,Line Counter Visualization
,Background Color Visualization
,Reference Path Visualization
,Instance Segmentation Model
,SIFT Comparison
,Triangle Visualization
,Path Deviation
,Line Counter
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Google Vision OCR
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Webhook Sink
,Dot Visualization
,Email Notification
,Model Comparison Visualization
,Classification Label Visualization
,Instance Segmentation Model
,Slack Notification
,Stability AI Image Generation
,Cache Set
,Time in Zone
,Line Counter
,Time in Zone
,Corner Visualization
,Trace Visualization
,Image Threshold
,Local File Sink
,CogVLM
,Stability AI Inpainting
,Circle Visualization
,OpenAI
,Path Deviation
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Image Preprocessing
,Detections Stitch
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Bounding Box Visualization
,Image Blur
,OpenAI
,CLIP Embedding Model
,Google Gemini
,Halo Visualization
,Ellipse Visualization
,Color Visualization
,Pixel Color Count
,YOLO-World Model
,Roboflow Dataset Upload
,Polygon Visualization
,Segment Anything 2 Model
,Cache Get
,Model Monitoring Inference Aggregator
,Mask Visualization
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Stitch OCR Detections
in version v1
has.
Bindings
-
input
predictions
(object_detection_prediction
): The output of an OCR detection model..tolerance
(integer
): The tolerance for grouping detections into the same line of text..
-
output
ocr_text
(string
): String value.
Example JSON definition of step Stitch OCR Detections
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/stitch_ocr_detections@v1",
"predictions": "$steps.my_ocr_detection_model.predictions",
"reading_direction": "right_to_left",
"tolerance": 10
}